Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.27.437309

ABSTRACT

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We have used a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide the first evidence that an RdRp uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enables the direct observation of coronavirus polymerase deep and long-lived backtrack that are strongly stimulated by secondary structure in the template. The framework presented here elucidates one of the most important structure-dynamics-function relationships in human health today, and will form the grounds for understanding the regulation of this complex.


Subject(s)
Stroke
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.06.240325

ABSTRACT

Coronavirus Disease 2019 (COVID-19) results from an infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the third coronavirus outbreak to plague humanity this century. Currently, the most efficacious therapeutic against SARS-CoV-2 infection is the Remdesivir (RDV), an adenine-like ribonucleotide analogue that is very efficiently incorporated by the SARS-CoV-2 replicase. Understanding why RDV is so well incorporated will facilitate development of even more effective therapeutics. Here, we have applied a high-throughput, single-molecule, magnetic-tweezers platform to study thousands of cycles of nucleotide addition by the SARS-CoV-2 replicase in the absence and presence of RDV, a Favipiravir-related analog (T-1106), and the endogenously produced ddhCTP. Our data are consistent with two parallel catalytic pathways of the replicase: a high-fidelity catalytic (HFC) state and a low-fidelity catalytic (LFC) state, the latter allowing the slow incorporation of both cognate and non-cognate nucleotides. ddhCTP accesses HFC, T-1106 accesses LFC as a non-cognate nucleotide, while RDV efficiently accesses both LFC pathway. In contrast to previous reports, we provide unequivocal evidence against RDV functioning as a chain terminator. We show that RDV incorporation transiently stalls the replicase, only appearing as termination events when traditional, gel-based assays are used. The efficiency of ddhCTP utilization by the SARS-CoV-2 replicase suggests suppression of its synthesis during infection, inspiring new therapeutic strategies. Use of this experimental paradigm will be essential to the development of therapeutic nucleotide analogs targeting polymerases.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL